Bonding is the ability to combined network interfaces as one. Bonding allows you to aggregate multiple ports into a single group, effectively combining the bandwidth into a single connection. Bonding also allows you to create multi-gigabit pipes to transport traffic through the highest traffic areas of your network. For example, you can aggregate three megabits ports into a three-megabits trunk port. That is equivalent with having one interface with three megabytes speed.
You can use it wherever you need redundant links, fault tolerance or load balancing networks. It is the best way to have a high availability network segment. A very useful way to use bonding is to use it in connection with 802.1q VLAN support (your network equipment must have 802.1q protocol implemented).
mode=1 (active-backup) Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and only if, the active slave fails. The bond's MAC address is externally visible on only one port (network adapter) to avoid confusing the switch. This mode provides fault tolerance. The primary option affects the behavior of this mode.
mode=2 (balance-xor) XOR policy: Transmit based on [(source MAC address XOR'd with destination MAC address) modulo slave count]. This selects the same slave for each destination MAC address. This mode provides load balancing and fault tolerance.
mode=3 (broadcast) Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.
mode=4 (802.3ad) IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.
mode=5 (balance-tlb) Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.
mode=6 (balance-alb) Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support. The receive load balancing is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local system on their way out and overwrites the source hardware address with the unique hardware address of one of the slaves in the bond such that different peers use different hardware addresses for the server. Also you can use multiple bond interface but for that you must load the bonding module as many as you need.
These instructions are based on having two NICs: eth0 and eth1
cat >> /etc/modprobe.conf << EOF alias bond0 bonding options bond0 miimon=80 mode=2 EOF cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF DEVICE=eth0 ONBOOT=yes BOOTPROTO=none USERCTL=no MASTER=bond0 SLAVE=yes EOF cat > /etc/sysconfig/network-scripts/ifcfg-eth1 << EOF DEVICE=eth1 ONBOOT=yes BOOTPROTO=none USERCTL=no MASTER=bond0 SLAVE=yes EOF
For Static IP addresss use the following:
cat > /etc/sysconfig/network-scripts/ifcfg-bond0 << EOF DEVICE=bond0 IPADDR=<ip address> NETMASK=<subnet mask> GATEWAY=<gateway ip> ONBOOT=yes BOOTPROTO=none USERCTL=no EOF
For DHCP, use the following:
cat > /etc/sysconfig/network-scripts/ifcfg-bond0 << EOF DEVICE=bond0 ONBOOT=yes BOOTPROTO=dhcp USERCTL=no EOF
Lastly, either reboot or restart networking…
service network restart